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Abstract. This paper shows how to determine all of the unidimensional two-state cellular
automaton rules of a given number of inputs which conserve the number of active sites. These
rules have to satisfy a necessary and sufficient condition. If the active sites are viewed as cells
occupied by identical particles, these cellular automaton rules represent evolution operators of
systems of identical interacting particles whose total number is conserved. Some of these rules,
which allow motion in both directions, mimic ensembles of one-dimensional pseudorandom
walkers. Numerical evidence indicates that the corresponding stochastic processes might be
non-Gaussian.

1. Introduction

Systems which consist of a large number of simple identical elements evolving in time
according to simple rules often exhibit a complex behaviour as a result of the cooperative
effect of their components. Cellular automata (CA) are models of such systems. They may
be defined as follows. Lets : Z× N 7→ {0, 1} be a function that satisfies the equation

s(i, t + 1) = f (s(i − rl, t), s(i − rl + 1, t), . . . , s(i + rr , t)) (1)

for all i ∈ Z and all t ∈ N, whereZ is the set of all integers andN is the set of non-
negative integers. Such a discrete dynamical system is a two-state one-dimensional CA.
The mappingf : {0, 1}rl+rr+1 → {0, 1} is the rule, and the positive integersrl and rr are,
respectively, the left and right radius of the rule.f will also be called ann-input rule where
n = rl + rr + 1. The functionSt : i 7→ s(i, t) is the state of the CA at timet . S = {0, 1}Z
is the state space. An element of the state space is also called a configuration. Since the
stateSt+1 at time t + 1 is entirely determined by the stateSt at time t and the rulef , there
exists a unique mappingFf : S → S such thatSt+1 = Ff (St ). Ff , which is the evolution
operator, is also referred to as the global CA rule.

CA have been widely used to model complex systems in which the local character of
the rule plays an essential role (Wolfram 1983, Farmeret al 1984, Mannevilleet al 1989,
Gutowitz 1990, Boccaraet al 1993). In the past few years, CA have been successfully used
to model highway traffic. One of the simplest models is defined on a one-dimensional lattice
of L sites with periodic boundary conditions. Each site is either occupied by a vehicle, or
empty. The velocity of each vehicle is an integer between 0 andvmax. If x(i, t) denotes the
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position of cari at timet , the position of the next car ahead at the same time isx(i+ 1, t).
With this notation, the system evolves according to a synchronous rule given by

x(i, t + 1) = x(i, t)+ v(i, t + 1) (2)

where

v(i, t + 1) = min(x(i + 1, t)− x(i, t)− 1, x(i, t)− x(i, t − 1)+ a, vmax) (3)

is the velocity of cari at time t + 1. x(i + 1, t)− x(i, t)− 1 is the gap (number of empty
sites) between carsi and i + 1 at timet , x(i, t)− x(i, t − 1) is the velocityv(i, t) of car i
at time t , anda is the acceleration.a = 1 corresponds to the deterministic model of Nagel
and Schreckenberg (1992) while the casea = vmax was considered by Fukui and Ishibashi
(1995). In this case, the evolution rule can be written

x(i, t + 1) = x(i, t)+min(x(i + 1, t)− x(i, t)− 1, vmax). (4)

This is a CA rule with, at least, its left radius equal tovmax and its right one equal tovmax−1.
The casea < vmax is a second-order rule, that is, the state at timet + 1 depends upon the
states at timest and t − 1. Forvmax= 1, these two rules coincide with the elementary CA
rule 184 (rule code numbers as in Wolfram (1994)).

Since, for these highway traffic models on a ring (we shall always consider cyclic
boundary conditions), the number of cars is conserved, it might be interesting to address
the more general question: is it possible to determine all one-dimensional two-state CA
rules which conserve the number of active sites? We cannot expect that all these rules will
mimic realistic highway traffic. It is preferable to view them as describing the evolution of
systems which consist of a fixed number of interacting particles.

2. General considerations

If the sites are either all inactive or all active, they should remain so during the evolution.
Therefore, for any number of inputsn, the local rule should satisfy the conditions

f (0, 0, 0, . . . ,0︸ ︷︷ ︸
n

) = 0 (5)

f (1, 1, 1, . . . ,1︸ ︷︷ ︸
n

) = 1. (6)

If the rule (1) changes the site values(i, t), we may say that it either ‘created’ a particle,
if s(i, t + 1) = 0 ands(i, t + 1) = 1, or ‘annihilated’ a particle in the opposite case. Since,
the arguments(i, t) of function f takes the values 0 and 1 an equal number of times,
conservation of a particle’s number implies that the number of creations and annihilations
should be equal. In other words, the number of preimages of 0 and 1 byf should be the
same.

Consider rulesf1 and f2, whose radii are, respectively,rl1, and rr1, and rl2 and rr2.
The rulef1◦f2 which consists, at each timestep, of the successive application off1 andf2,
conserves the number of particles iff1 andf2 do. Its radii arerl = rl1+rl2 andrr = rr1+rr2.
For instance, the four-input rule whose binary code number is 1011100010111000 (rl = 1,
rl = 2) conserves the number of particles since it is the composition of the left shift
(binary code number 1010,rl = 0, rr = 1) and rule 184 (binary code number 10111000,
rl = rr = 1) which both conserve the number of particles.

If, as for highway traffic, we wish to follow particles motion, it might be useful to
define a representation of rulef which exhibits this motion. Such a ‘motion representation’
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may be defined as follows. List all the neighbourhoods of a given particle represented by
1. Then, for each neighbourhood, indicate the displacement of this particle by an integer
v, wherev is positive if the particle moves to the right and negative if it moves to the left.
For instance, the motion representation of rule 184 would be

10 1, 11 0. (7)

Since, for this particular rule, the particle can only move to the right, we only need to
indicate the relevant neighbourhood of the particle. This representation can be made more
visual if we draw an arrow joining the initial and final positions of the particle, i.e. for
rule 184

y
10,

�
11. (8)

Note that, in this case, it is not necessary to specify the moving particle by a bold digit.
This last notation is very compact. For instance, the four-input rule which results from

the composition of rule 184 and the left shift, is represented by
�
10,

x
•11

where• represents either 0 or 1. The motion representation has another advantage. When
we are interested by the motion of the particles, the knowledge of the rule table, which
gives the images of the variousn-inputs, is not sufficient. We have to specify the values
of the right and left radii since modifyingrl and rr at constantn is equivalent to adding a
constant velocity to all the particles.

Rules obtained by reflection or conjugation of a rule conserving the number of active
sites have the same property. Reflection exchanges the values ofrl and rr and changes
the sign of the velocity. Conjugation exchanges the roles of 0’s and 1’s, that is, if a rule
describes a specific motion of particles (represented by 1’s) then its conjugate describes the
same rule, but for the motion of holes (represented by 0’s). IfR andC denote, respectively,
these two operators, twon-input rulesf1 andf2 are said to be equivalent if there exists an
elementg of the four-group generated byR andC which transformsf1 into f2.

3. Rules determination

One method to determine all of then-input rulesf conserving the number of active sites
is to find a system of equations whose solutions are all the functions

f : {0, 1}n 7→ {0, 1} (9)

which, for allL > n, satisfy the conditions

f (x1, x2, . . . , xn)+ f (x2, x3, . . . , xn+1)+ · · · + f (xL, x1, . . . , xn−1)

= x1+ x2+ · · · + xL (10)

for all L-ring configurations (cyclic permutations). Such a system shall be called anL-
system of equations. Conditions (10) are clearly necessary, but does there exist as a
minimum valueLmin of L such that they are also sufficient?

We shall prove thatLmin exists, and is equal to2n − 2. That is, the necessary
and sufficient condition for a rulef to conserve the number of active sites is to satisfy
relations (10) forL = 2n− 2.

Before giving a formal proof of this result, we shall present a simple, but not rigorous,
argument. Given the statess(1, t), s(2, t), . . . , s(n, t) of sites 1, 2, . . . , n at timet , the state
s(rrl+1, t + 1) of site rl + 1 at timet + 1 is determined (n = rl + rr + 1). To determine the
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states of sites 1 andn at timet +1, we also need to know the states at timet of the rl sites
on the left of site 1 and therr sites on the right of siten. To obtain the minimum number
of sufficient conditions satisfied by (9), we shall require that the minimum number of sites
we have to add to the originaln sites should be such that their state values at timet + 1
should depend on, at least, one of the site valuess(1, t), s(2, t), . . . , s(n, t). This condition
implies that we should consider anLmin-ring in which the sites 1− rl andn+ rr coincide.
Therefore,Lmin = rl + n+ rr − 1, that is,Lmin = 2n− 2.

To prove the above result in a more rigorous way, we shall show that, ifL > 2n−2, any
equation of anL-system is a linear combination of three equations belonging, respectively,
to (L− 1)-, (2n− 3)-, and(2n− 2)-systems. More precisely, for allL-ring configurations
{x1, x2, . . . , xL}, equation (10) can be written

(f (x1, x2, . . . , xn)+ f (x2, x3, . . . , xn+1)+ · · · + f (xL−1, x1, . . . , xn−1))

−(f (x1, x2, . . . , xn−2, xL−n+1, xL−n+2)

+f (x2, x3, . . . , xL−n+3)+ · · · + f (xn−2, xL−n+1, . . . , xL−1)

+f (xL−n+1, xL−n+2, . . . , xL−1, x1)+ · · · + f (xL−1, x1, . . . , xn−2, xL−n+1))

+(f (x1, x2, . . . , xn−2, xL−n+1, xL−n+2)

+f (x2, x3, . . . , xL−n+3)+ · · · + f (xn−2, xL−n+1, . . . , xL−1)

+f (xL−n+1, xL−n+2, . . . , xL−1, xL)+ · · · + f (xL−1, xL, x1, . . . , xn−2)

+f (xL, x1, . . . , xn−2, xL−n+1))

= (x1+ x2+ · · · + xL−1)− (x1+ · · · + xn−2+ xL−n+1+ · · · + xL−1)

+(x1+ · · · + xn−2+ xL−n+1+ · · · + xL). (11)

To verify this result, we have to assume thatxL−1 = xL, which is always the case
for any cycle, except whenL is even, for the cycle 1010. . .10. Verifying (11) is then a
bit tedious but straightforward. By induction, relation (11) shows that any equation of an
L-system is a linear combination of equations belonging to(2n−3)- and(2n−2)-systems.

The equation corresponding to the cyclic configuration 1010. . .10 reads

f (1010. . .10)+ f (0101. . .01)+ · · · + f (0101. . .01)︸ ︷︷ ︸
L

= L

2
(12)

if n is even, and

f (1010. . .01)+ f (0101. . .10)+ · · · + f (0101. . .10)︸ ︷︷ ︸
L

= L

2
(13)

if n is odd. That is,

f (1010. . .10)+ f (0101. . .01) = 1 (14)

if n is even, and

f (1010. . .01)+ f (0101. . .10) = 1 (15)

if n is odd. One of the images byf of the two alternatingn-sequences of 0’s and 1’s is
equal to 1, and the other one to 0.

4. Examples

One- and two-input rules conserving the number of active sites are trivial. The identity,

represented by
�
1, is the only one-input rule, and the left and right shifts, represented
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respectively by
x
•1 and

y
1•, are the only two-input rules. Note that the rule represented by

�
1• or •

�
1 is the identity viewed as a two-input rule, but in agreement with our convention

to only represent the relevant neighbourhood, we shall always represent it as a one-input
rule. This is a general feature. When we solve the system of equations (10) forn = 3 and
Lmin = 4, we shall re-obtain the identity, and the left and right shifts as three-input rules.

4.1. Three-input rules

The only non-trivial three-input rules conserving the number of active sites are rules 184
and 226, represented respectively by

y
10,

�
11 and

x
01, 1

�
1. (16)

Rule 226, which can be obtained either by reflection or conjugation of rule 184, models
exactly the same deterministic highway traffic rule. The only difference, clearly shown by
the motion representation, is that cars move to the right instead of moving to the left.

4.2. Four-input rules

The system of equations (10) forn = 4 andLmin = 6 has 22 solutions. Among these,
we re-obtain the identity, the left and right shifts, rules 184 and 226 and some simple
combinations of these rules viewed as four-input rules. The new rules are as follows.
• Rules 43 944, 65 026, 59 946, 49 024. The motion representation of rule 43 944

(rl = 2, rr = 1) is
y

100,
y
101,

�
11.

This rule coincides with the highway traffic rule (4) forvmax = 2, and cars moving to the
right. Rule 65 026, obtained by reflection of 43 944, describes the same highway traffic rule
but for cars moving in the opposite direction.

The motion representation of rule 59 946, which is the conjugate of rule 43 944, is

0
x
11, 1

x
01, 11

�
1.

It describes a highway traffic rule in which drivers, anticipating the motion of the car ahead,
may move to an occupied site withvmax = 1. More general rules of this type have been
studied by Fuḱs and Boccara (1997). Rule 49 024 is obtained by reflection of rule 59 946.
• Rules 58 336, 52 930, 63 544, 48 268. The motion representation of rule 58 336

(rl = 1, rr = 2) is
y
100,

�
101,

�
11.

It describes a highway traffic rule of overcautious drivers who move to the right with a
velocity equal to 1 if, and only if, they have two empty sites ahead of them. By reflection
we obtain rule 52 930 describing the same highway traffic rule but for cars moving in the
opposite direction.

The motion representation of rule 63 544, conjugate of rule 58 336, is
x
011, 0

�
10, 1

�
1.

A particle moves to the left if, and only if, the neighbouring left site is empty, and the
neighbouring right site is occupied. If the neighbouring left site is occupied the particle
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does not move. As a highway traffic rule, it describes drivers who do not like to be followed,
and move to an empty site only when there is a car just behind them. By reflection we
obtain rule 48 268.
• Rules 56 528, 57 580, 62 660, 51 448. The motion representation of rule 56 528

(rl = 1, rr = 2) is
�
100,

y
101,

�
11.

A particle moves to the right if, and only if, its first right site is empty and its second right
site is occupied. As a highway traffic rule it describes drivers who move to an empty site
if, as a result, they can be just behind another car. Rule 57 580 is obtained by reflection.

The motion representation of rule 62 660, conjugate of rule 56 528, is
x
011, 0

�
11.

The particle moves to an empty site on its left if, and only if, there is an empty site on its
right. Rule 51 448 is obtained by reflection.
• Rules 60 200, 48 770. These rules are self-conjugate. The motion representation of

rule 60 200 (rl = 1, rr = 2) is
y
100,

�
101,

x
011, 1

�
11.

A particle moves to the right if, and only if, it has two neighbouring empty sites on that
side. If only the first neighbouring site is empty, it does not move to avoid occupying a
site close to another particle. If its first right neighbouring site is occupied, then the particle
moves to the left when that site is empty. The effective interaction between these particles
is repulsive. Rule 48 770, obtained by reflection, describes a similar evolution rule.

These last two rules have interesting properties. Starting from a random initial
configuration, after a maximum number of timesteps equal toN/2, whereN is the number
of sites, the system evolves on its limit set. This limit set has a rather simple structure. If
the density of particlesρ = 1

2, it consists of three types of periodic sequences, namely:

. . .101010101010. . . of period 2

. . .100100100100. . . of period 3

. . .110110110110. . . of period 3.

The probabilities of the various three-blocks have been determined numerically. We have
found

P(000) = P(111) = 0

P(001) = P(110) = P(100) = P(011) = 0.145± 0, 001

P(010) = P(101) = 0.210± 0.001.

Regarded as a formal language (Wolfram 1984, Denninget al 1978, Hopcroft and
Ullmam 1986), such a limit set is regular. Words in a regular language, on the alphabet
{0, 1}, are generated by walks through a finite directed graph whose arcs are labelled with
0 or 1. Given a finite graph, it is always possible to find an equivalent deterministic finite
graph, that is, a graph in which no more than one arc of a given label leaves each vertex. For
rules 60 200 and 48 770, the corresponding deterministic graph is represented in figure 1.
For ρ = 1

2, when the CA evolves on its limit set, each particle performs a pseudorandom
walk. The CA rules being deterministic, the randomness comes from the randomness of
the initial configuration. Numerical simulations show that any particle has a probability
p = 0.29 to move either to the left or right, and a probabilityq = 1− 2p = 0.42 not
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Figure 1. Regular language graph for rules 60 200 and 48 770.

to move. Actually this pseudorandom motion is periodic in time, the period being equal
to N/2. In the limit set, for a given random initial configuration, all particles perform the
same pseudorandom walk, with a phase difference depending on the distance separating
them. More precisely, ifXn(t) denotes the position of particlen at time t , for rule 60 200,
we have

Xn(t) = Xn+1(t − 1)− 2

which implies

Xn(t) = Xn+t (0)− 2t.

This last result shows that the position of a specific particle at timet is determined by the
position of another specific particle in the initial configuration.

To characterize the nature of the randomness of the motion of a particle, we have
determined the Hurst exponent (Hurst 1951, Hurstet al 1965, Feder 1988) of the time
series generated by the displacement of a given particle. Given a time seriess(t), the Hurst
exponentH characterizes the asymptotic behaviour of the standard deviation ofs(t) as
a function of time. A Brownian motion (symmetric random walk) has a Hurst exponent
H = 1

2. For a particle moving according to the four-input rules 60 200 and 48 770, we have
foundH = 0.63± 0.02. Since the pseudo-random motion is periodic in time with a period
equal to half the lattice size, this numerical result is debatable. It could be interesting to
perform a detailed study of the correlations, but, even correlated random walks may have a
Gaussian behaviour when the number of timesteps goes to infinity (Weiss 1994). However,
in this case, there exists a crossover between a non-Gaussian and a Gaussian behaviour.
This fact implies that, for a large value of the number of timestepst , the exponent of the
standard deviation of the walk could, numerically, be different from1

2.
When ρ 6= 1

2, the limit set consists of the previous periodic sequences and either
sequences of 0’s ifρ < 1

2 or sequences of 1’s ifρ > 1
2. From the motion representation of

rule 60 200, it follows that the average velocity〈v〉 of the particles isP(100)−P(011). The
conjugacy operator changes〈v〉 in−〈v〉 andρ in 1−ρ. Therefore, the so-called ‘fundamental
diagram’ of road traffic theory, that is, the graph of the flowρ〈v〉 as a function of the density
ρ, has a centre of symmetry, namely, the point(ρ, ρ〈v〉) = ( 1

2, 0) (figure 2). Rule 48 770
has identical properties.

4.3. Five-input rules

The number of rules conserving the number of active sites grows very fast with the number
of inputs. There exist 428 five-input rules conserving the number of active sites. A few
of them are not new either because they actually depend upon a smaller number of inputs
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Figure 2. Fundamental diagram for rule 60 200. Small circles represent numerical results. The
piecewise linear line has been obtained using local structure approximation (see below).

or because they are a simple composition of the rules already obtained. In this section we
shall just describe the self-conjugate rules†.

There exists 20 self-conjugate rules. Some, such as the identity and the shifts (left and
right, simple and double), are trivial. We also re-obtain the two self-conjugate four-input
rules. Each of them twice depending on which side, left or right, the extra input is added.
Finally, we are left with 11 new self-conjugate rules. For each rule we shall always choose
the values ofrl and rr such that the condition〈v〉 = 0 for ρ = 1

2 is satisfied. This can
always be done.

Few of these rules are still not very interesting. After few timesteps, for allρ ∈]0, 1[,
five rules emulate the identity, which means that no particles are moving. These rules are:
rule 346 456 0268 (rl = 1, rr = 3), whose motion representation is

000
�
1, 01

�
11, 10

x
01, 010

�
1, 01

y
10, 11

�
1, 110

�
1

rule 377 126 4248 (rl = 1, rr = 3), whose motion representation is

00
�
11, 00

y
10, 001

�
1, 010

�
1, 11

x
01, 11

�
1, 101

�
1

and rule 382 473 8360 (rl = rr = 2), whose motion representation is

0
x
011, 00

�
10, 1

�
101, 01

�
11, 10

�
1 1

y
100, 11

�
11.

Rules 424 966 8928 and 415 766 320 obtained by reflection of the first two rules have the
same property. Rule 382 473 8360 is invariant under reflection.

Rule 316 765 3058 (rl = 3, rr = 1), whose motion representation is

00
x
01, 01

�
1, 10

�
1, 11

�
11, 100

�
1, 11

y
10

† Codes of all other rules can be obtained from the authors through E-mail.
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Figure 3. Fundamental diagram for rule 316 765 3058. Small circles represent numerical results.

is rather peculiar. As shown in figure 3, this rule emulates the identity only forρ ∈ [ 1
3,

2
3].

Rule 427 001 4080, obtained by reflection has identical properties. Note that the flow
diagram (figure 3) is piecewise linear.

The four remaining rules are similar to the four-input rules 60 200 and 48 770 in the
sense that they have similar flow diagrams and that, forρ = 1

2, they mimic pseudorandom
walkers. These rules are as follows.
• Rule 322 112 7170 (rl = 2, rr = 2), whose motion representation is

0
x

001, 1
�
111. 10

x
01, 10

�
1, 1

y
10, 1

y
110

and rule 393 708 6120 obtained by reflection.
• Rule 370 703 1748 (rl = 2, rr = 2), whose motion representation is

0
x
010, 00

�
11, 1

�
100, 01

�
11, 10

�
1, 1

y
101, 11

�
11

and rule 416 291 200 obtained by reflection.
The fundamental diagrams of rules 322 112 7170 and 370 703 1748 are represented,

respectively, in figures 4 and 5. Here again we verified that the corresponding stochastic
processes are not Gaussian. We have found that their Hurst exponents are equal for all of
them to 0.57± 0.02. We have no explanation why rules 322 112 7170 and 370 703 1748
should have the same exponent.

5. Approximate methods

The mean-field approximation, which neglects correlations in space and time, yields, for
these systems, an exact but trivial result. Letρ(t) denotes the particles density at timet . To
find the expression ofρ(t +1) as a function ofρ(t), we have to find all the preimages of 1
by then-input rulef . According to (5) all these preimages contain at least one 1. Moreover,
among all of the preimages containing exactlyk + 1 times the digit 1 (06 k 6 n − 1),
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Figure 4. Fundamental diagram for rule 322 112 7170. Small circles represent numerical results.

Figure 5. Fundamental diagram for rule 370 703 1748. Small circles represent numerical results.

according to the conditions (10) forL = n, only
(
n−1
k

)
have a preimage equal to 1. Therefore,

ρ(t + 1) = ρ(t)
( n−1∑
k=0

(
n− 1

k

)
(ρ(t))k(1− ρ(t))n−k−1

)
= ρ(t)(ρ(t)+ (1− ρ(t)))n−1

= ρ(t)
which expresses that density is conserved.
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There exists a variety of other approximate methods which, taking into account short-
range correlations, improve the prediction of the mean-field approximation. Instead of
expressing the evolution of the CA in terms of one-block probabilities, they express it in
terms ofn-block probabilities (Gutowitzet al 1987). For example, in the case of four-input
rules, the evolution of the two-block probability distribution is given by

P(a1a2) =
∑

b0,b1,b2,b3,b4∈{0,1}
w(a1a2|b0b1b2b3b4)P (b0b1b2b3b4)

whereP(a1a2) is the probability of blocka1a2, and

w(a1a2|b0b1b2b3b4) = w(a1|b0b1b2b3)w(a2|b1b2b3b4)

is the conditional probability that the four-input rule maps the five-blockb0b1b2b3b4 into
the two-blocka1a2. This equation is exact. The approximation consists of replacing the
five-block probabilityP(b0b1b2b3b4) in terms of two-block probabilities. That is,

P(b0b1b2b3b4) = P(b0b1)P (b1b2)P (b2b3)P (b3b4)

(P (b10)+ P(b11))(P (b20)+ P(b21))(P (b30)+ P(b31))
.

We applied this method up to approximation of order 3 (mean field being order 1) to four-
input rule 60 200. The results are not exact, but for the flow diagram the agreement with
our numerical results is extremely good (figure 2).

6. Conclusion

We have established necessary and sufficient conditions to be satisfied by any one-
dimensional CA rule conserving the number of active sites. This result has been used to
determine all of the four- and five-input one-dimensional CA rules possessing this property.
These rules express the evolution of one-dimensional systems of interacting particles whose
number is conserved. Simple deterministic highway traffic rules belong to that class of
rules. These rules are a natural generalization of deterministic traffic rules already studied.
We have studied in more detail (flow diagram, local structure approximation) some of our
rules allowing motion of the particles in both directions. When the particle density is equal
to 1

2, these rules mimic the evolution of pseudorandom walkers. Numerical evidence seems
to indicate that the motion of these walkers is non-Gaussian.
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